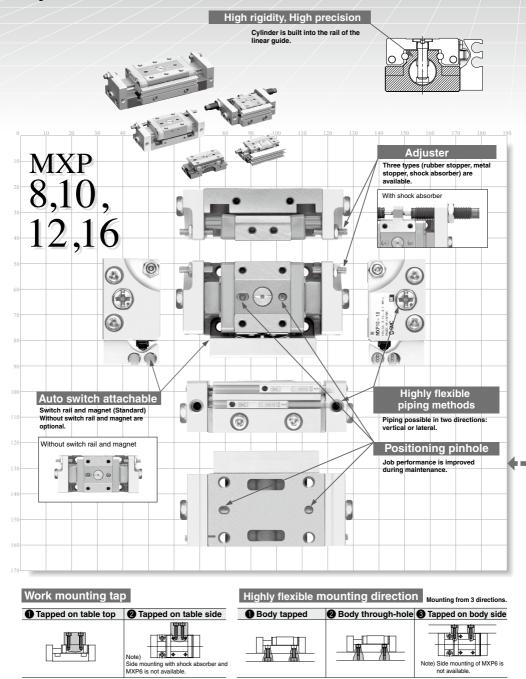
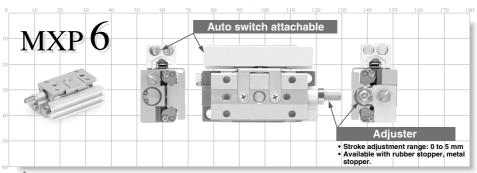

Air Slide Table

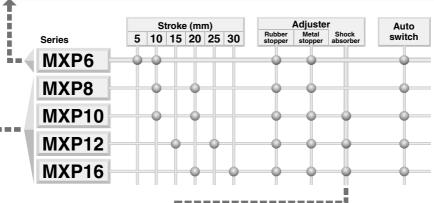

MXP Series

Ø6, Ø8, Ø10, Ø12, Ø16

Cylinder: Built-in Linear Guide

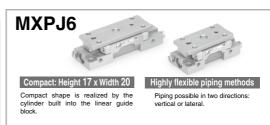
Compact Air Slide Table


■ Travelling parallelism*: 0.004 mm Parallelism: 0.02 mm

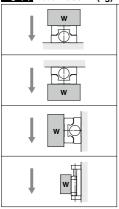

* Refer to page 451 for details of the traveling parallelism

Numerous auto switch variations available

Reed switch, solid state switch, and 2-color indicator solid state auto switch can be mounted.


With auto switches and adjuster

With shock absorber



Model Selection

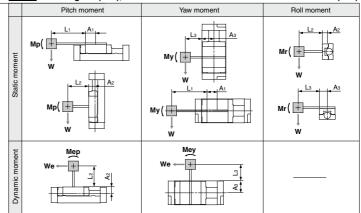

lodel Selection Steps	Formula/Data	Selection Example
Operating Conditions		
Enumerate the operating conditions considering the mounting position and workpiece configuration. Check that the load mass does not exceed the maximum allowable load mass and that the average operating speed does not exceed the operating speed range.	Model to be used Mounting orientation Average operating speed Va (mm/s) Load mass W (kg): Fig. (1) Overhang Ln (mm): Fig. (2)	Cylinder: MXP10-10 Mounting: Horizontal wall mounti Average operating sp Va = 300 [mm/s] Load mass: W = 0.2 L2 = 20 mm L3 = 30 mm
Kinetic Energy		
Find the kinetic energy E (J) of the load. Confirm that the kinetic energy of the load does not exceed the	$E = \frac{1}{2} \cdot W \left(\frac{V}{1000}\right)^{2}$ $Collision speed V = \underbrace{1.4 \cdot Va}_{*} * Correction factor$ $Kinetic energy (E) < Allowable kinetic energy (Emax)$	$E = \frac{1}{2} \cdot 0.2 \left(\frac{420}{1000} \right)^2 = 0.018$ $V = 1.4 \times 300 = 420$ Possible to use by E = 0.018 < Emax = 0.045
allowable kinetic energy.	Allowable kinetic energy Emax: Table (1)	
Load Factor		
Load Factor of Load mass		
Find the allowable load mass Wa (kg). Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define α1 = 0.)	$Wa = \beta \cdot Wmax$ Allowable load weight coefficient β : Graph (1) Max. allowable load mass Wmax: Table (2)	Wa = 1 x 1.2 = 1.2 β = 1 Wmax = 1.2 α 1 = 0.2/1.2 = 0.17
Find the load factor of the load mass α_1 .	α1 = W/Wa	0.1 = 0.21.2 = 0.17
2 Load Factor of Static Momer	nt	
Find the static moment M (N·m).	M = W x 9.8 (Ln + An)/1000 Moment center position distance compensation amount An: Table (3)	Examine Mr. [As Mp and My does not arise, examination is not needed.] Mr = 0.2 x 9.8 (20 + 6.8)/1000 = 0.053
Find the allowable static moment Ma (N-m).	Ma = Υ· Mmax Allowable moment coefficient Υ: Graph (2) Maximum allowable moment Mmax: Table (4)	A ₂ = 6.8 Mar = 1 x 4.2 = 4.2 Y = 1 Mrmax = 4.2
Find the load factor 0.2 of the static moment.	0.2 = M/Ma	$\alpha_2 = 0.053/4.2 = 0.013$
3 Load Factor of Dynamic Mon		
Find the dynamic moment Me (N-m).	Me = 1/3 · We x 9.8 (Ln + An) 1000 Load equivalent to collision We = δ · W · V δ· Damper coefficient Rubber stopper = 4/100 Shock absorber = 1/100 Metal stopper = 16/100 Corrected value for moment center position distance An: Table (3)	Examine Mep. $ \begin{aligned} \text{Mep} &= 1/3 \times 3.36 \times 9.8 \times \frac{(20+6.8)}{1000} = 0.29 \\ \text{We} &= 4/100 \times 0.2 \times 420 = 3.36 \\ \text{A}_2 &= 6.8 \\ \text{Meap} &= 0.7 \times 1.7 = 1.19 \\ \text{Y} &= 0.7 \\ \text{Mp max} &= 1.7 \\ \text{G}_3 &= 0.29/1.19 = 0.24 \end{aligned} $
Find the allowable dynamic moment Mea (N·m).	Mea = Y·Mmax Allowable moment coefficient Y: Max. allowable moment Mmax: Table (4)	$\alpha_3 = 0.291.19 = 0.24$ Examine Mey. Mey = 1/3 x 3.36 x 9.8 x $\frac{(30 + 10.5)}{1000} = 0.44$
Find the load factor α_3 of the dynamic moment.	оз = Ме/Меа	We = 33.6 A ₁ = 10.5
4 Sum of the Load Factors		Meay = 1.19 (Same as Meap) α' 3 = 0.44/1.19 = 0.37
Use is possible if the sum of the		Can be used based on

Fig. (1) Load Mass: W (kg)

Fig. (2) Overhang: Ln (mm), Correction Values for Moment Center Distance: An (mm)

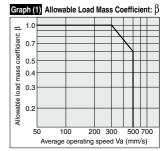
Note) No need to consider this load factor in the case of using perpendicularly in a vertical position.

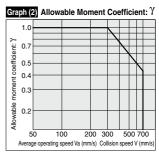
Note) Static moment: Moment by gravity Dynamic moment: Moment by stopper collision

Table (1) Allowable Kinetic Energy: Emax (J)

Model	Allowable kinetic energy							
Model	Rubber stopper Shock absorbe		Metal stopper					
MXPJ6	0.010		_					
MXP 6	0.010	_	0.005					
MXP 8	0.033		0.017					
MXP10	0.045	0.090	0.023					
MXP12	0.076	0.152	0.038					
MXP16	0.135	0.270	0.068					

Table (2) Max. Allowable Load Mass: Wmax (kg)


Model	Maximum allowable load weight					
MXPJ6						
MXP 6	0.32					
MXP 8	0.75					
MXP10	1.2					
MXP12	1.7					
MXP16	3					


Table (3) Moment Center Position Distance Compensation Amount: An (mm)

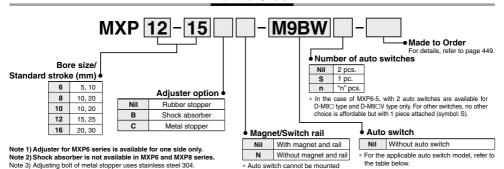
Model	Stroke	Moment center position distance compensation amount (Refer to Fig. (2).)							
Model	Stroke	A1	A 2	A 3					
MXPJ6	5	18.5	5.3	9					
MXP 6	10	23.5	5.3	9					
MXP 8	10	10.5	7.4	11					
IVIAP 6	20	20.5	7.4	''					
MXP10	10	10.5	6.8	13.5					
WAPIU	20	19.5	6.6	13.5					
MXP12	15	14.5	8	16					
WAP 12	25	24.5	٥	10					
MXP16	20	20	12.5	23					
WAPIS	30	28	12.5	23					

Table (4) Maximum Allowable Moment: Mmax (N·m)

	Р	itch/Yaw	momer	nt: Mpma	ax/Myma	Roll moment: Mrmax												
Model			Stroke	e (mm)				Stroke (mm)										
	5	10	15	20	25	30	5	10	15	20	25	30						
MXPJ6		0.0					0.0	3.5										
MXP 6	1.4	2.3	2.3	2.3	2.3	2.3	2.3	2.3	_	-			2.6	3.5				_
MXP 8	_	1.4	_	5.7	_	_	_	2.6	_	5.6	_	_						
MXP10		1.7	_	6.3	_	_	_	4.2	_	8.5	_	_						
MXP12	_	_	4.5	_	13	_	_	_	9.8	_	17	_						
MXP16	_	_	_	12	_	28	_	-	_	26	-	41						

Note) Use the average operating speed when calculating static moment.

Use the collision speed when calculating dynamic moment.


Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 3)	Correction values of moment center position distance	mm	V	Collision speed	mm/s
E	Kinetic energy	J	Va	Average operating speed	mm/s
Emax	Allowable kinetic energy	J	W	Load mass	kg
Ln (n = 1 to 3)	Overhang	mm	Wa	Allowable load mass	kg
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	N⋅m	We	Mass equivalent to impact	kg
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	N⋅m	Wmax	Max. allowable load mass	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	N⋅m	α	Load factor	_
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	N⋅m	β	Allowable load mass coefficient	_
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (pitch, yaw, roll)	N⋅m	γ	Allowable moment coefficient	_

Air Slide Table **MXP Series**Ø6, Ø8, Ø10, Ø12, Ø16

How to Order

Applicable Auto Switches/Refer to pages 1289 to 1383 for further information on auto switcher

Ahr	licable Auto Si	witches/			289 to 13	B83 for fu	rtner infor	mation on au	to switches.																					
	Cooriel	Electrical	igh	Wiring	L	oad volta	ge	Auto swit	ch model	Lead	wire	length	n (m)																	
Туре	Special function	entry	Indicator light	(Output)	С	C	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5	Pre-wired connector	Applie loa															
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	IC															
				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit															
ء ح				2-wire		12 V	1	M9BV	M9B	•	•	•	0	0	_	1														
state	D:			3-wire (NPN)		5 V. 12 V	1	M9NWV	M9NW	•	•	•	0	0	IC	D-1														
	Diagnostic indication (2-color indicator)	Grommet	les/	3-wire (PNP)	24 V	24 V 5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	3 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	3 V, 12 V	-	M9PWV	M9PW	•	•	•	0	0	circuit	Relay, PLC
Solid auto s	(E color iridicator)		ĺ	2-wire	12 V 5 V, 12 V	12 V	1	M9BWV	M9BW	•	•	•	0	0	_	FLC														
s s				3-wire (NPN)		5 1/ 40 1/	1	M9NAV*1	M9NA*1	0	0	•	0	0	IC	1														
	Water resistant (2-color indicator)			3-wire (PNP)			5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	circuit											
	(E color iridicator)			2-wire		12 V	1	M9BAV*1	M9BA*1	0	0	•	0	0	_	1														
Reed b switch		C	, les	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	IC circuit	_														
B S	· 	Grommet		2-wire	0.11	12 V	100 V	A93V*2	A93	•	•	•	•	_	_	Relay,														
auto			2	2-wire	24 V	12 V	100 V or less	A90V	A90	•	-	•	-	_	IC circuit	PLC														

on type N (without magnet and rail).

- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. *2 1 m type lead wire is only applicable to D-A93.
- *2 I m type lead wire is only applicable to D-A93.

For heat treated specifications, refer to "Made to Order Specifications"

- * Solid state auto switches marked with "O" are produced upon receipt of order.
- * Since there are other applicable auto switches than listed, refer to page 463 for details.
- * For details about auto switches with pre-wired connector, refer to pages 1358 and 1359. * Auto switches are shipped together (not assembled).

MXPJ6/Air Slide Table ø6

How to Order

MXPJ6 - 10

Standard stroke

5 5 mm 10 10 mm

* MXP.I6 with auto switch is not available

Specifications

Bore size (mm)	6
Piping port size	M3 x 0.5
Fluid	Air
Action	Double acting
Operating pressure	0.15 to 0.7 MPa
Proof pressure	1.05 MPa
Ambient and fluid temperature	−10 to 60°C
Operating speed range (Average operating speed)	50 to 500 mm/s
Cushion	Rubber bumper
Lubrication	Non-lube
Stroke length tolerance	+1 mm

Mar.

Theoretical Output

							(N)
Bore size	Piston area (mm²)	Op	eratir	ng pr	essu	re (N	1Pa)
(mm)		0.2	0.3	0.4	0.5	0.6	0.7
6	28	6	8	11	14	17	20

Stroke

	(mm)
Model	Standard stroke
MXPJ6	5, 10

Weight

	(3)
Model	Body weight
MXPJ6-5	80
MXPJ6-10	105
•	

Air Slide Table MXP Series

With Shock Absorber

*Exclusive body is to be used for the one with shock absorber. Changing specifications, such as replacing component parts and retrofitting shock absorber is not possible.

Symbol

Made to

Made to Order: Individual Specifications (For details, refer to pages 464 to 466.)

Symbol	Specifications
-X7	PTFE grease
-X9	Grease for food processing machines
-X16	Heat treated metal stopper bolt specification
-X23	Axial piping port set screw specification
-X39	Fluororubber seal
-X42	Anti-rust guide specification
-X51	Long adjustment nut specification

For clean room specifications, refer to the **Web Catalog**.

Moisture Control Tube IDK Series

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

piping depending on the conditions. Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the Web Catalog.

Specifications

	Model	MXP6	MXP8	MXP10	MXP12	MXP16
Bore size (m	Bore size (mm)		8	10	12	16
Piping port	size	M3 x 0.5		M5 :	c 0.8	
Fluid				Air		
Action		Double acting				
Operating p	ressure		(0.15 to 0.7 MPa	a	
Proof press	ure	1.05 MPa				
Ambient and	fluid temperature	= −10 to 60°C				
	Operating speed range (Average operating speed) 50 to 500 mm/s (Adjuster option/Metal stopper: 50 to 200 mm/s)			/s)		
Cushion		Rubber bumper Shock absorber (Option is not available for MXP6 and MXP8 series) None (Adjuster option/Metal stopper)				
Lubrication		Non-lube				
Adjuster		Standard equipment (Adjustable on one side only, for the MXP6)				
Stroke	Rubber stopper	0 to 5 mm on one side only		Each 0 to 3 mr	n on both ends	3
adjustment	Shock absorber	-	-	Each 0	to 5 mm on bo	th ends
range Metal stopper		Oto 6 mm on one side only Each O to 5 mm on both ends Each O to 4 mm on both ends				
Auto switch		Reed auto switch (2-wire, 3-wire)				
		Solid state auto switch (2-wire, 3-wire) 2-color indicator solid state auto switch (2-wire, 3-wire)				
Stroke lengt	th tolerance	+1 mm				

None) Average operating speed: Speed that the stroke is divided by a period of time from starting the operation to reaching the end.

Theoretical Output

							(N)
Bore size	Piston area		Operating pressure (MPa)				
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7
6	28	6	8	11	14	17	20
8	50	10	15	20	25	30	35
10	79	16	24	32	40	47	55
12	113	23	34	45	57	68	79
16	201	40	60	80	101	121	141

Standard Stroke

	(mn
Model	Standard stroke
MXP6	5, 10
MXP8	10, 20
MXP10	10, 20
MXP12	15, 25
MXP16	20, 30

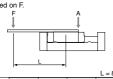
Weight

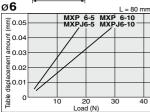
	Body	mass	Additional
Model	Rubber bumper Metal stopper	Shock absorber	weight of magnet and switch rail
MXP6-5	80	_	10
MXP6-10	105	_	10
MXP8-10	100	_	8
MXP8-20	160	_	12
MXP10-10	130	170	13
MXP10-20	210	255	20
MXP12-15	210	250	17
MXP12-25	320	375	23
MXP16-20	640	700	20
MXP16-30	830	905	23

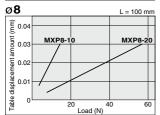
Shock Absorber Specifications

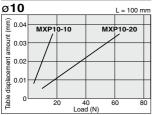
Shock absorber model		RB0805N	RB0806N	
Applicable slide	e table	MXP10/12	MXP16	
Max. energy abso	rption (J)	0.98	2.94	
Stroke absorption	(mm)	5	6	
Max. collision speed (mm/s)		50 to 500		
Max. operating frequency (cycle/min)		80	80	
Max. allowable thrust (N)		245	245	
Ambient temperature	range (°C)	-10 to 60		
Spring force (N)	Extended	1.96	1.96	
Retracted		3.83	4.22	
Weight (g)		15	15	

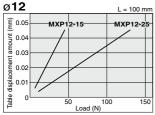
^{*}The shock absorber service life is different from that of the MXP cylinder depending on the operating conditions. Refer to the RB series Specific Product Precautions for the replacement period.

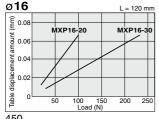

(q)

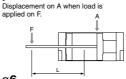

Table Deflection (Reference Values)

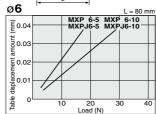

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable weight. Refer to the Model Selection for the loadable weight.

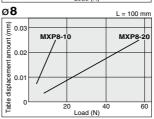

Table displacement due to pitch moment load


Displacement on A when load is applied on F.

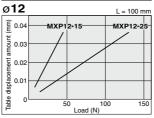


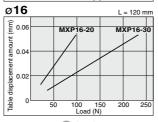


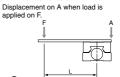


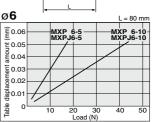


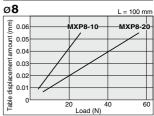


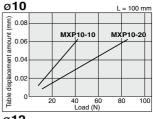

Table displacement due to yaw moment load

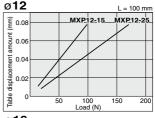


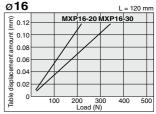


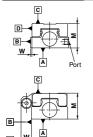


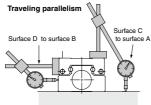





Table displacement due to roll moment load







Air Slide Table MXP Series

Table Accuracy

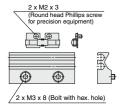
The amount of deflection on a dial gauge when the guide block travels a full stroke with the body secured on a reference base surface.

Non-rotating accuracy Radial clearance Radial clearance Fixed body

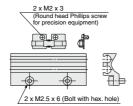
Model	MXPJ6	MXP6	MXP8	MXP10	MXP12	MXP16
Radial clearance (µm)	0 to -2	0 to -2	0 to -3	0 to -3	0 to -5	0 to -7
Table non-rotating accuracy (deg)	O Note)					

Note) In theory, non-rotating table accuracy is zero by the preloaded specification. However, in some actual cases, a moment can be applied and can cause deflection in an individual part. Therefore, refer to the table displacement amount on page 334.

With shock absorber

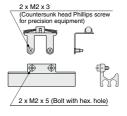

							(111111)
	Model		MXP6	MXP8	MXP10	MXP12	MXP16
Parallelism	Surface C to surface A	0.02					
Farallelisili	Surface D to surface B	0.02					
Traveling	Surface C to surface A	0.004					
parallelism	Surface D to surface B	0.004					
M dimension tolerance		±0.05					
W dime	nsion tolerance	±0.05					

Option Specifications


Rail assembly for mounting auto switch

When auto switch is mounted on air slide table without rail (MXP□-□N), this assembly is used.

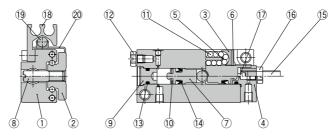
Dimensions



MXP10, 12, 16

(mm)

MXP8


MXP6

Applicable size	Switch rail part no.	Note
MXP6-5	MXP-AD6-5	
MXP6-10	WAF-AD0-5	
MXP8-10	MXP-AD8-10	
MXP8-20	MXP-AD8-20	
MXP10-10	MXP-AD10-10	With magnet and
MXP10-20	MXP-AD10-20	mounting screw
MXP12-15	MXP-AD12-15	
MXP12-25	MXP-AD12-25	
MXP16-20	MXP-AD10-20	
MXP16-30	MXP-AD12-25	

Note) MXP16-20 and MXP10-20 are common. MXP16-30 and MXP12-25 are common.

Construction

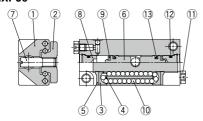
MXP6

Component Parts

No.	Description	Material	Note	
1	Body	Hardening steel	Heat treated	
2	Table	Hardening steel	Heat treated	
3	Cover	Resin		
4	End plate	Stainless steel		
5	Return guide	Resin		
6	Scraper	Stainless steel, NBR		
7	Piston	Brass	Electroless nickel plated	
8	Joint shaft	Carbon steel	Electroless nickel plated	
9	End cap	Brass	Electroless nickel plated	
10	Rod bumper	Polyurethane		
11	Steel ball	High carbon chrome bearing steel		
12	Plug	Brass, Stainless steel, NBR	Electroless nickel plated	

Replacement Parts/ Seal Kit

Bore size (mm)	Kit no.	Contents
6	MXP6-PS	2 pieces of no. 3, 4 and Gasket for 2


Component Parts

	•		
No.	Description	Material	Note
13	O-ring	NBR	
14	Piston seal	NBR	
	Adjustment bolt	Carbon steel (Rubber stopper)	Zinc chromated
15	15 Adjustment bolt	Stainless steel (Metal stopper)	
16	Adjustment nut	Carbon steel	Nickel plated
17	Adjustment bumper	Polyurethane	None for the metal stopper
18	Switch rail	Aluminum alloy	Hard anodized
19	Magnet	_	
20	Magnet holder	Steel	Electroless nickel plated

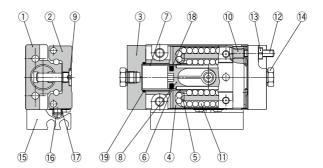
Replacement Parts/ Grease Pack

Applied unit	Grease pack part no.
Guide unit	GR-S-010 (10g)
Guide unit	GR-S-020 (20g)
Cylinder unit	GR-L-005 (5g)
Cylinder unit	GR-L-010 (10g)

MXPJ6

Replacement Parts/ Grease Pack

Applied unit	Grease pack part no.
Guide unit	GR-S-010 (10g)
Guide unit	GR-S-020 (20g)
Collinates smit	GR-L-005 (5g)
Cylinder unit	GR-L-010 (10g)


Component Parts

No.	Description	Material	Note
1	Body	Hardening steel	Heat treated
2	Table	Hardening steel	Heat treated
3	Cover	Resin	
4	Return guide	Resin	
5	Scraper	Stainless steel, NBR	
6	Piston	Brass	Electroless nickel plated
7	Joint shaft	Carbon steel	Electroless nickel plated
8	End cap	Brass	Electroless nickel plated
9	Rod bumper	Polyurethane	
10	Steel ball	High carbon chrome bearing steel	
11	Plug	Brass, Stainless steel, NBR	Electroless nickel plated
12	O-ring	NBR	
13	Piston seal	NBR	

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
6	MXPJ6-PS	2 pieces of no. ② and ③ and Gasket for ①

MXP8,10,12,16

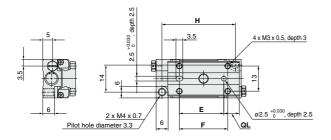
Component Parts

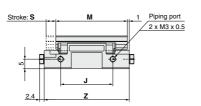
No.	Description	Material	Note		
1	Body	Hardening steel	Heat treated		
2	Guide block	Hardening steel	Heat treated		
3	End plate	Aluminum alloy	Hard anodized		
4	Cover	Resin			
5	Return guide	Resin			
6	Scraper	Stainless steel, NBR			
7	Tube	Stainless steel	(Except ø8)		
8	Piston	Resin			
9	Joint shaft	Carbon steel	Electroless nickel plated		
10	Adjustment bumper	Polyurethane	None for the metal stopper		

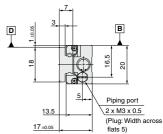
Replacement Parts/ Seal Kit

Bore size (mm)	Kit no.	Contents					
8	MXP8-PS						
10	MXP10-PS	2 pieces of no.18, 19 and					
12	MXP12-PS	Gasket for 14					
16	MXP16-PS						

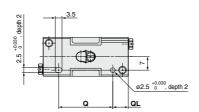
Component Parts

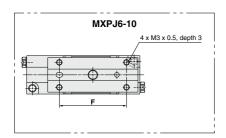

••••	oonone i ai to		
No.	Description	Material	Note
11	Steel ball	High carbon chrome bearing steel	
12	Adjustment helt	Carbon steel (Rubber stopper)	Zinc chromated
12	Adjustinent boit	Stainless steel (Metal stopper)	
13		Carbon steel	Ø8 to Ø12: Zinc chromated Ø16: Nickel plated * Nickle plated for the type with a shock absorber
14	Plug	Carbon steel, Stainless steel, NBR	Nickel plated
15	Switch rail	Aluminum alloy	Hard anodized
16	Magnet	_	
17	Magnet holder	Steel	Electroless nickel plated
18	Piston seal	NBR	
19	O-ring	NBR	

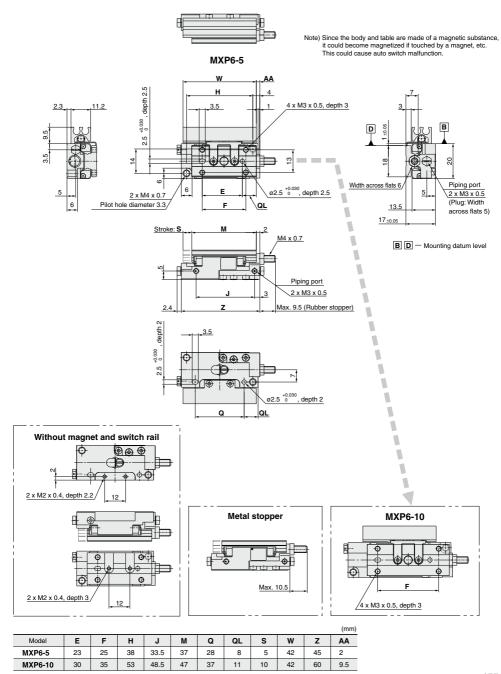

Replacement Parts/ Grease Pack

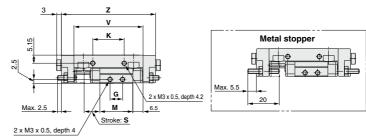

Applied unit	Grease pack part no.				
Guide unit	GR-S-010 (10g)				
Guide unit	GR-S-020 (20g)				
Culindar unit	GR-L-005 (5g)				
Cylinder unit	GR-L-010 (10g)				

Dimensions: MXPJ6


MXPJ6-5

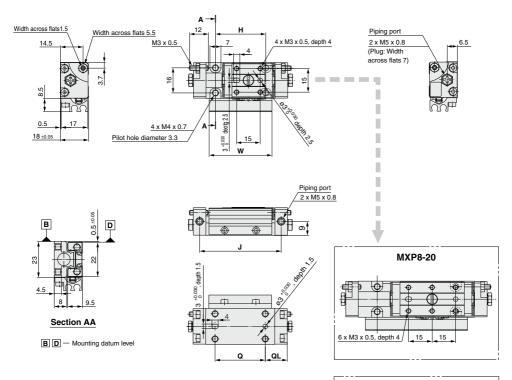



B D — Mounting datum level

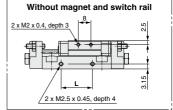


									(mm)
Model	E	F	Н	J	М	Q	QL	S	Z
MXPJ6-5	23	25	38	27	37	28	8	5	44
MXPJ6-10	30	35	53	42	47	37	11	10	59

Air Slide Table MXP Series

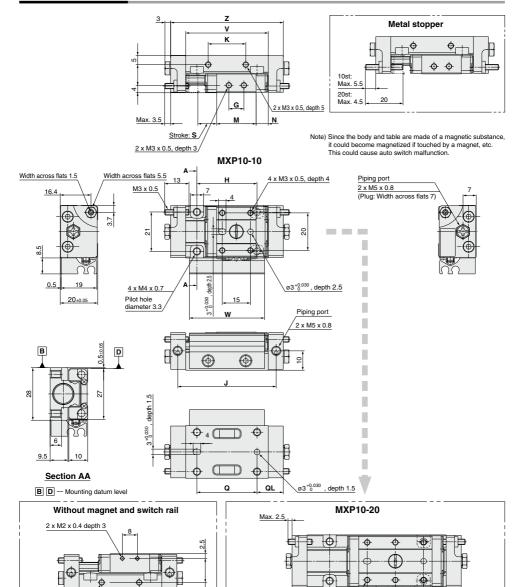


Dimensions: MXP8



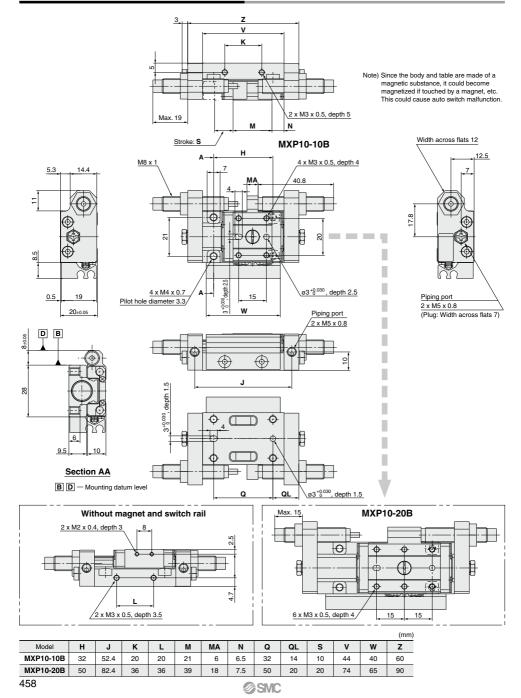
Note) Since the body and table are made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction.

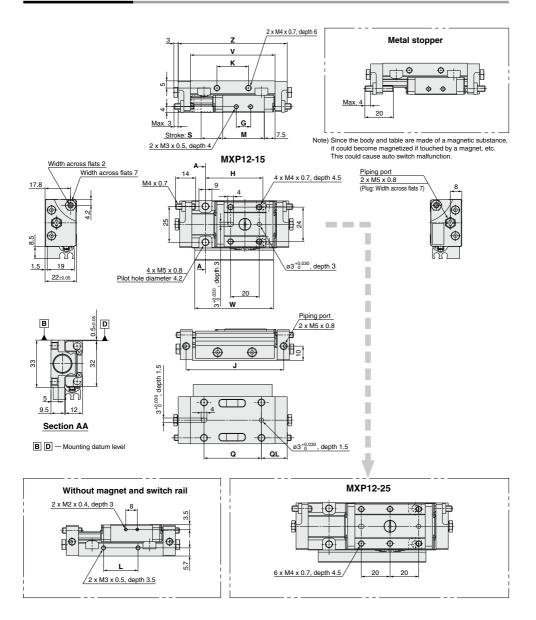
MXP8-10



Ţ												(111111)
Model	G	Н	J	K	L	М	Q	QL	S	٧	W	Z
MXP8-10	8	32	52	20	20	21	32	14	10	44	40	60
MXP8-20	20	50	82	36	36	41	50	20	20	74	65	90

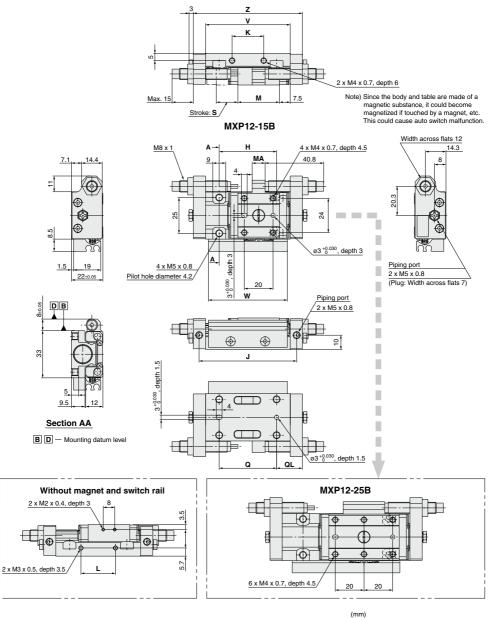
Dimensions: MXP10


2 x M3 x 0.5, depth 3.5

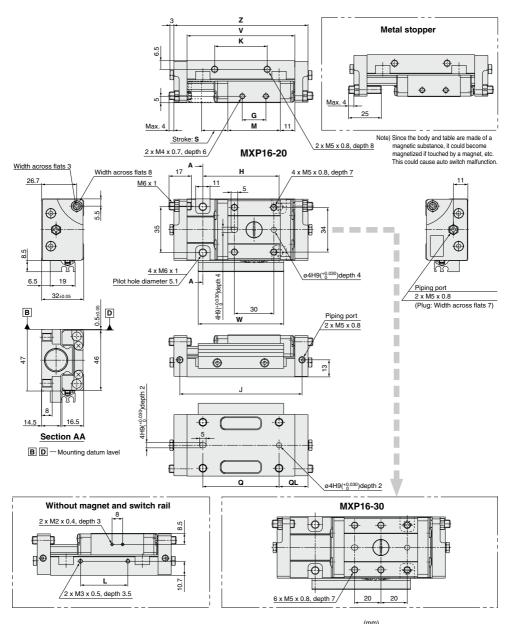

	(IIII)												
Model	G	Н	J	K	L	М	N	Q	QL	S	٧	W	Z
MXP10-10	8	32	52.4	20	20	21	6.5	32	14	10	44	40	60
MXP10-20	20	50	82.4	36	36	39	7.5	50	20	20	74	65	90

6 x M3 x 0.5, depth 4

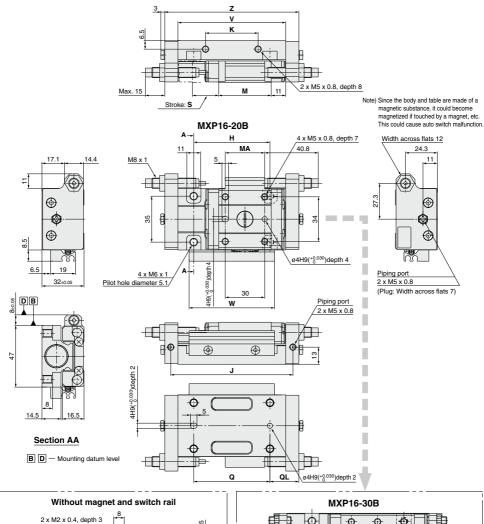
Dimensions: MXP10 with Shock Absorber

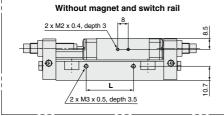


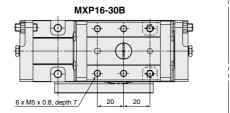
Dimensions: MXP12


	(11													
Model	G	н	J	K	L	М	Q	QL	S	٧	W	Z		
MXP12-15	10	40	68	22	24	29	40	18	15	59	55	76		
MXP12-25	30	60	98	40	42	49	60	23	25	89	75	106		

Dimensions: MXP12 with Shock Absorber


Model	Н	J	K	L	М	MA	Q	QL	S	٧	W	Z
MXP12-15B	40	68	22	24	29	9	40	18	15	59	55	76
MXP12-25B	60	98	40	42	49	29	60	23	25	89	75	106


Dimensions: MXP16

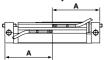


												(111111)
Model	G	Н	J	K	L	М	Q	QL	S	٧	W	Z
MXP16-20	18	58	93	40	36	40	58	22	20	82	65	102
MXP16-30	28	70	119	50	42	56	70	29	30	108	75	128

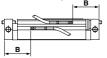
Dimensions: MXP16 with Shock Absorber

												(111111)
Model	Н	J	K	L	М	MA	Q	QL	S	٧	W	Z
MXP16-20B	58	93	40	36	40	30	58	22	20	82	65	102
MXP16-30B	70	119	50	42	56	46	70	29	30	108	75	128

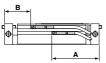
462



Auto Switch Mounting


Auto Switch Proper Mounting Position (Detection at Stroke End)

MXP8.10.12.16


· Electrical entry from outside

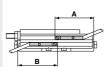
Electrical entry from inside
 B

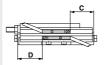
· Parallel electrical entry

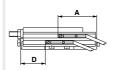
Reed Auto Switch D-A90(V), D-A93(V), D-A96(V) (mm)

Mod	Model		Stroke (mm)							
iviou	EI	10 15		20	25	30				
MXP8	Α	35	_	45	ı	_				
WIXP8	В	15	_	25	_	_				
MXP10	Α	35	_	45	_	_				
WIXPIU	В	15	_	25	-	_				
MXP12	Α	_	40.5	_	50.5	_				
MXP12	В	_	20.5	_	30.5	_				
MXP16	Α	_	_	51	ı	59				
IVIAPIO	В	_	_	31	_	39				

Solid State Auto Switch D-M9B(V), D-M9N(V), D-M9P(V) (mm


D-INIBB(V), D-INIBIN(V), D-INIBF(V) (mm)								
	-1	Stroke (mm)						
Mod	eı	10	10 15		25	30		
MXP8	Α	31	_	41	_	_		
WIXP8	В	19	_	29	_	_		
MXP10	Α	31	_	41	-	_		
MXPIU	В	19	_	29	_	_		
MXP12	Α	_	36.5	_	46.5	_		
IVIAP 12	В	_	24.5	_	34.5	_		
MXP16	Α	_	_	47	_	55		
IVIAPIO	В	_	_	35		43		


2-Color Indicator, Solid State Auto Switch D-M9BW(V), D-M9NW(V), D-M9PW(V), D-M9PQ(V) (mm)


אוטפווויט (ז), אוויטפוויט אוויט									
Mod	-1	Stroke (mm)							
Mod	eı	10 15		20	25	30			
MXP8	Α	31	_	41	ı	_			
IVIXP8	В	19	_	29	_	_			
MXP10	Α	31	_	41	-				
IVIAPIU	В	19	_	29	-				
MXP12	Α	_	36.5	_	46.5	_			
IVIAP 12	В	_	24.5	_	34.5	_			
MXP16	Α	_	_	47	ı	55			
IVIAPIO	В	_	_	35		43			

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

MXP6

Reed Auto Switch D-A90(V), D-A93(V), D-A96(V)

Mode	el	Stroke (mm)
	Α	34.5
MXP6	В	35.5
MXP6	С	14.5
	D	15.5

Solid State Auto Switch D-M9B(V), D-M9N(V), D-M9P(V)

	,	. ,,	٠,		
Mari		Stroke (mm)			
Mode	BI	5 10			
	Α	25.5	30.5		
мхр6	В	26.5	31.5		
IVIAFO	С	13.5	18.5		
	D	14.5	19.5		

2-Color Indicator, Solid State Auto Switch D-M9BW(V), D-M9NW(V), D-M9PW(V), D-M9□A(V)

Mode	-1	Stroke (mm)			
IVIOG	ei	5	10		
	Α	25.5	30.5		
мхр6	В	26.5	31.5		
IVIAFO	С	13.5	18.5		
	D	14.5	19.5		

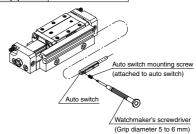
Operating Range

					(mm)
Auto militale mandal		Applic	able bor	e size	
Auto switch model	6	8	10	12	16
D-A9□/A9□V	5	5	5	5	5
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3	3	3.5	3	3

Minimum Auto Switch Mounting Stroke

			(mm)					
	Applic	Applicable auto switch model						
No. of auto switches mounted	D-A9□ D-A9□V	D-M9□ D-M9□V	D-M9□W D-M9□WV D-M9□AV					
1 pc.	5	5	5					
2 pcs.	10	5	10					

Auto Switch Mounting



Auto Switch Mounting Tool

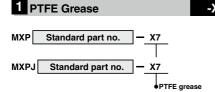
 Use the watchmaker's screwdriver with a handle diameter 5 to 6 mm when tightening the auto switch mounting screw (attached to auto switch).

Tightening Torque

Tightening Torque of Auto Switch Mounting Screw					
Auto switch model	Tightening torque				
D-A9□(V)	0.10 to 0.20				
D-M9□(V) D-M9□W(V)	0.05 to 0.15				
D-M9□A(V)	0.05 to 0.10				

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.

* Normally closed (NC = b contact) solid state auto switches (D-M9□E(V)) and a solid state auto switch (D-F8) are also available. Refer to pages 1307 and 1308 for details.


Made to Order: Individual Specifications 1

Please contact SMC for detailed dimensions, specifications and lead times.

Made-to-Order Application Chart		MXPJ6	MXP6	MXP8	MXP10	MXP12	MXP16	Note
PTFE grease	X7	•	•	•	•	•	•	
Grease for food	Х9	•	•	•	•	•	•	
Heat treated metal stopper bolt	X16		•	•	•	•	•	Metal stopper only
Axial piping port set screw	X23	•	•	•	•	•	•	
Fluororubber seal	X39	•	•	•	•	•	•	
Anti-corrosive Specifications for Guide Unit	X42	•	•	•	•	•	•	
Long adjustment nut	X51			•	•	•	•	Except with shock absorber

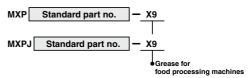
Symbol

PTFE grease is used for all parts that grease is applied.

* For the type with a shock absorber, standard grease is used on the shock absorber part.

Specifications


Туре	PTFE grease
Bore size (mm)	6, 8, 10, 12, 16


* Dimensions other than the above is the same as the standard type.

⚠ Warning

Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Grease for food processing machines is used for all parts that grease is applied.

* For the type with a shock absorber, standard grease is used on the shock absorber part.

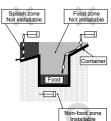
Specifications

Туре	Grease for Food Processing Machines (NSF-H1 certified)/ Aluminum Complex Soap Base Grease
Bore size (mm)	6, 8, 10, 12, 16

 \ast Dimensions other than the above is the same as the standard type.

♠ Caution

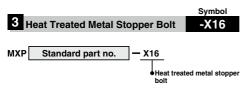
- 1. Do not use in a food contact environment.
- Do not use in a liquid splash environment, e.g. water, detergent, liquid chemicals.


<Not installable>

Food zone......An environment where food which will be sold as merchandise directly touches the cylinder's components

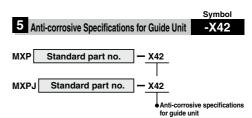
Splash zone......An environment where food which will not be sold as merchandise directly touches the cylinder's components

<Installable>


Non-food zone An environment where there is no contact with food

Made to Order: Individual Specifications 2

Please contact SMC for detailed dimensions, specifications and lead times.

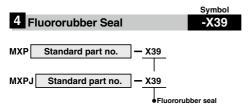


To reduce wear on the metal stopper, heat treated chrome molybdenum steel (SCM435) is used for the stroke adjustment screw.

Specifications

Туре	Heat treated metal stopper bolt			
Bore size (mm)	6 8, 10 12, 16			
Speed range	50 to 200 mm/s			
Cushion	None			
Stroke adjustment	Singe end: 0 to 6 mm	Double ends: 0 to 5 mm each	Double ends: 0 to 4 mm each	

^{*} Dimensions other than the above is the same as the standard type.



Anti-corrosive treatment is applied to the table, body and guide block.

Specifications

Туре	Anti-corrosive guide unit	
Bore size (mm)	6, 8, 10, 12, 16	
Surface treatment	Special anti-corrosive treatment (2)	

- * 1 Dimensions other than the above is the same as the standard type.
- * 2 The special anti-corrosive treatment turns the table, body and guide block black.

Change the materials for the piston seal, O-rings and scrapers (rubber lined parts) to fluororubber.

For the type with a shock absorber, standard model is used on the shock absorber part.

Specifications

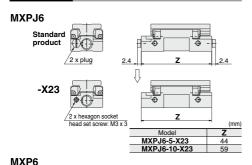
Туре	Fluororubber seal
Bore size (mm)	6, 8, 10, 12, 16
Seal material	Fluororubber

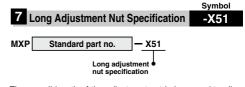
^{*} Dimensions other than the above is the same as the standard type.

Made to Order: Individual Specifications 3

Please contact SMC for detailed dimensions, specifications and lead times.

6 Axial Piping Port Set Screw Specification


Symbol -X23



The axial piping port plug is changed to a hexagon socket head set screw, and the overall length is shortened.

Note: The hexagon socket head screw is secured with an anaerobic adhesive and cannot be removed.

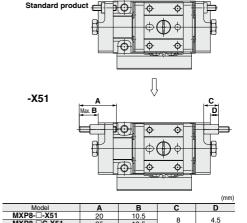
Dimensions

The overall length of the adjustment nut is increased to allow stroke adjustment work from any direction.

Dimensions

MXP8, 10, 12, 16

MXP8-□C-X51


MXP10-□-X51

MXP10-□C-X51

MXP12-□-X51

MXP12-□C-X51 MXP16-□-X51

MXP16-□C-X51

10.5

10.5

10.5

9

9

8

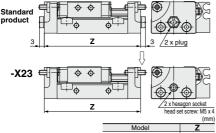
9

4.5

5

25

20


25

20

25

/IXP6				
Standard product	3000	•		
	2 x plug	2.4	Z	2.4
-X23	2 x hexagon socket	1	Z .	Ф
	head set screw: M3			(mm)
		Model		Z
		MXP6-5-X		45
		MXP6-10-	X23	60
//YDQ 10 1	2 16			

MXP8,10,12,16

i

Model	Z
MXP8-10-X23	60
MXP8-20-X23	90
MXP10-10-X23	60
MXP10-20-X23	90
MXP12-15-X23	76
MXP12-25-X23	106
MXP16-20-X23	102
MXP16-30-X23	128

Be sure to read this before handling the products.

Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Selection

 Use a load within a range that does not exceed the operating limit.

Select models based on the maximum load mass and the allowable moment. Refer to model selection on pages 446 and 447 for detailed methods. If operated beyond the operating limit, the eccentric load applied to the guide section will be excessive. This can have an adverse effect on service life due to vibration in the guide unit and loss of accuracy, etc.

When performing intermediate stops with an external stopper, employ measures to prevent lurching.

If lurching occurs damage can result. When making a stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.

Do not operate in such a way that excessive external forces or impact forces are applied to the product.

This can cause damage.

Mounting

⚠ Caution

1. Do not scratch or gouge the mounting surfaces of the body and table (guide block).

This can cause loss of parallelism in the mounting surfaces, vibration of the guide unit and increased operating resistance, etc.

2. Do not scratch or gouge the transfer surfaces of the body and table (quide block).

This can cause vibration and increased operating resistance, etc.

3. Do not apply strong impacts or excessive moment when mounting work pieces.

Application of external forces greater than the allowable moment can cause vibration of the guide unit and increased operating resistance, etc.

4. Ensure that the parallelism of the mounting surface is 0.02 mm or less.

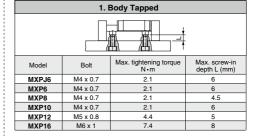
Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration of the guide unit and increased operating resistance, etc.

 For connection to a load that has an external support or guide mechanism, select an appropriate connection method and perform careful alignment.

Mounting

Do not allow objects affected by magnets in close proximity to the air slide table

Since magnets are built into the side of the guide block when equipped with auto switches, do not allow items such as magnetic disks, magnetic cards or magnetic tape close to the air slide table. Data may be erased.



Do not attach magnets to the table (guide block) section.

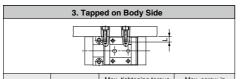
Since the table (guide block) is constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to it, and this may cause malfunction of auto switches etc.

 When mounting a body, use screws of an appropriate length and tighten them properly at no more than the maximum tightening torque.

Tightening with a torque above the limit can cause malfunction, while insufficient tightening can cause slippage and dropping, etc.

Model	Bolt	Max. tightening torque N•m	Body thickness L (mm)	
MXPJ6	M3 x 0.5	1.2	6	
MXP6	M3 x 0.5	1.2	6	
MXP8	M3 x 0.5	1.2	4.5	
MXP10	M3 x 0.5	1.2	6	
MXP12	M4 x 0.7	2.1	5	
MXP16	M5 x 0.8	4.4	8	

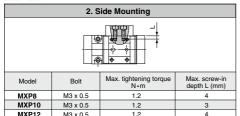
2. Body Through-hole



Be sure to read this before handling the products.

Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Mounting


Model	Bolt	N•m	depth L (mm)
MXP8	M3 x 0.5	1.2	4
MXP10	M3 x 0.5	1.2	5
MXP12	M4 x 0.7	2.1	6
MXP16	M5 x 0.8	4.4	8

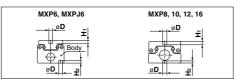
1. Top Mounting MXPJ6, MXP6 MXP10, 12, 16 Body

Model	Bolt	Max. tightening torque N • m	Max. screw-in depth L (mm)
MXPJ6	M3 x 0.5	1.2	3
MXP6	M3 x 0.5	1.2	3
MXP8	M3 x 0.5	1.2	4
MXP10	M3 x 0.5	1.2	4
MXP12	M4 x 0.7	2.1	4.5
MXP16	M5 x 0.8	4.4	7

∧ Caution

Since the bolts pass through in the case of MXPJ6 and MXP6, use bolts shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause trouble.

MXP16 ⚠ Caution


Side mounting is not possible when equipped with shock absorber

M4 x 0 7

Mounting

21

When the positioning pinhole is used for mounting a body, select a positioning pin with an appropriate length.

	D: 1 1 F	B: 1 1	1 1
Model	Pinhole diameter	Pinhole	aeptn
Wiodei	øD	H ₁ mm	H ₂ mm
MXPJ6	2.5 +0.030	2.5	2
MXP6	2.5 +0.030	2.5	2
MXP8	3 +0.030	2.5	1.5
MXP10	3 +0.030	2.5	1.5
MXP12	3 +0.030	3	1.5
MXP16	4H9 +0.030	4	2

Operating Environment

 Do not use in environments where there is direct exposure to liquids such as cutting oil.

Operation in environments where the body is exposed to cutting oil, coolant or oil mist can cause vibration, increased operating resistance and air leakage, etc.

Do not use in environments where there is direct exposure to foreign matter such as dust, dirt, chips and spatter.

This can cause vibration, increased operating resistance and air leakage, etc.

Consult with SMC regarding use in this kind of environment.

- 3. Do not use in direct sunlight.
- When there are heat sources in the surrounding area, block them off.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover etc.

Do not subject it to excessive vibration and/or impact.

Please consult with SMC regarding use in this kind of environment, as this can cause damage and malfunction.

6. Use caution for the anti-corrosiveness of linear quide section.

Especially, rust may be generated in an environment where waterdrops are likely to adhere due to condensation, etc.

Adjuster Option Handling Precautions

With Shock Absorber

 Never turn the screw on the bottom of the shock absorber body.

This is not an adjustment screw. Turning it can cause oil leakage.

2. Do not scratch the sliding surface of the shock absorber's piston rod.

This can cause a loss of durability and return malfunction.

Be sure to read this before handling the products.

Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Adjuster Option Handling Precautions

3. Use the tightening torque in the table below for the shock absorber's lock nut.

Bolt	Tightening torque N • m	
MXP10		
MXP12	1.67	
MXP16		

Rust may occur specifically in an environment where water drops from condensation adhere to a surface.

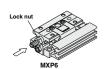
- 4. Provide shade in locations exposed to direct sunlight.
- Block off sources of heat located near by.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.

Do not use in locations where vibration or impact occur.

Consult with SMC regarding use in this kind of environment, as damage and malfunction can result.

Service Life and Replacement Period of Shock Absorber

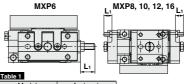

 Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million cycles RB08□□

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Shock absorber model
RB0805N
RB0805N
RB0806N

Stroke Adjustment


Loosen the lock nut, adjust the stroke with a hexagon wrench from the side marked with an arrow and secure with the lock nut.

Stroke Adjustment

Rubber Stopper

If not adjusted for effective operation of the urethane bumper, impact will increase and have an adverse effect on service life. As a guide, adjust so that dimension L_1 is less than the value shown in "Table 1".

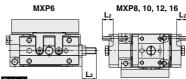


Table 1	
Model	L ₁ (mm)
MXP6-5	9 (one side only)
MXP6-10	9 (one side only)
MXP8-10	6
MXP8-20	6
MXP10-10	7
MXP10-20	6
MXP12-15	7
MXP12-25	7
MXP16-20	8
MXP16-30	8

Metal Stopper

In the case of a metal stopper, adjust so that the adjuster hits the end face of the guide block.

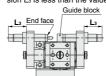

As a guide, adjust so that dimension L_2 is less than the value shown in "Table 2".

Table 2	
Model	L ₂ (mm)
MXP6-5C	10 (one side only)
MXP6-10C	10 (one side only)
MXP8-10C	9
MXP8-20C	9
MXP10-10C	9
MXP10-20C	8
MXP12-15C	8
MXP12-25C	8
MXP16-20C	8
MXP16-30C	8

Shock Absorber

When equipped with shock absorber, adjust so that the end face of the shock absorber hits the guide block. If the shock absorber does not operate effectively, impact will increase and have an adverse effect on service life. As a guide, adjust so that dimension Ls is less than the value shown in "Table 3".

Table 3	
Model	L ₃ (mm)
MXP10-10B	19
MXP10-20B	15
MXP12-15B	15
MXP12-25B	15
MXP16-20B	15
MXP16-30B	15

Be sure to read this before handling the products. Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Other

 Do not put hands or fingers between the end plate and guide block.

Never put hands or fingers in the gap between the end plate and guide block when retracted. Doing so will result in injury to the hands, or fingers.

Be aware that smoking cigarettes, etc., after your hands have come into contact with the grease used in the cylinder section of this product can create a gas that is hazardous to humans.

- 1. Do not disassemble or modify the product.
- 2. Performance stability

The piston speed in the specification table shows the average speed. The actual speed of this product may vary slightly during the stroke depending on the operating conditions, such as the change of load resistance and pressure.

